Character table for the C12h point group

C12h    E       2 C12   2 C6    2 C4    2 C3    2 C12^5 C2      i       2 S12   2 S6    2 S4    2 S3    2 S12^5 sh         <R> <p> <—d—> <——f——> <———g———> <————h————> <—————i—————> 
Ag      1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000     ..T ... ....T ....... ........T ........... ............T
Bg      1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000     ... ... ..... ....... ......... ........... TT...........
E1g *   2.0000  1.7320  1.0000  0.0000 -1.0000 -1.7320 -2.0000  2.0000 -1.7320 -1.0000  0.0000  1.0000  1.7320 -2.0000     TT. ... ..TT. ....... ......TT. ........... ..........TT.
E2g *   2.0000  1.0000 -1.0000 -2.0000 -1.0000  1.0000  2.0000  2.0000  1.0000 -1.0000 -2.0000 -1.0000  1.0000  2.0000     ... ... TT... ....... ....TT... ........... ........TT...
E3g *   2.0000  0.0000 -2.0000  0.0000  2.0000  0.0000 -2.0000  2.0000  0.0000  2.0000  0.0000 -2.0000  0.0000 -2.0000     ... ... ..... ....... ..TT..... ........... ......TT.....
E4g *   2.0000 -1.0000 -1.0000  2.0000 -1.0000 -1.0000  2.0000  2.0000 -1.0000 -1.0000  2.0000 -1.0000 -1.0000  2.0000     ... ... ..... ....... TT....... ........... ....TT.......
E5g *   2.0000 -1.7320  1.0000  0.0000 -1.0000  1.7320 -2.0000  2.0000  1.7320 -1.0000  0.0000  1.0000 -1.7320 -2.0000     ... ... ..... ....... ......... ........... ..TT.........
Au      1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000     ... ..T ..... ......T ......... ..........T .............
Bu      1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000  1.0000 -1.0000     ... ... ..... ....... ......... ........... .............
E1u *   2.0000  1.7320  1.0000  0.0000 -1.0000 -1.7320 -2.0000 -2.0000  1.7320  1.0000  0.0000 -1.0000 -1.7320  2.0000     ... TT. ..... ....TT. ......... ........TT. .............
E2u *   2.0000  1.0000 -1.0000 -2.0000 -1.0000  1.0000  2.0000 -2.0000 -1.0000  1.0000  2.0000  1.0000 -1.0000 -2.0000     ... ... ..... ..TT... ......... ......TT... .............
E3u *   2.0000  0.0000 -2.0000  0.0000  2.0000  0.0000 -2.0000 -2.0000  0.0000 -2.0000  0.0000  2.0000  0.0000  2.0000     ... ... ..... TT..... ......... ....TT..... .............
E4u *   2.0000 -1.0000 -1.0000  2.0000 -1.0000 -1.0000  2.0000 -2.0000  1.0000  1.0000 -2.0000  1.0000  1.0000 -2.0000     ... ... ..... ....... ......... ..TT....... .............
E5u *   2.0000 -1.7320  1.0000  0.0000 -1.0000  1.7320 -2.0000 -2.0000 -1.7320  1.0000  0.0000 -1.0000  1.7320  2.0000     ... ... ..... ....... ......... TT......... .............

 Irrational character values:  1.732050807569 = 2*cos(2*π/12) = 2*cos(π/6) = √3



 Symmetry of Rotations and Cartesian products

Ag   R+d+g+i+k+m  Rz, z2, z4, z6 
Bg   2i+2k+2m     x2(x2−3y2)2y2(3x2y2)2, xy(x2−3y2)(3x2y2) 
E1g  R+d+g+i+k+m  {Rx, Ry}, {xz, yz}, {xz3, yz3}, {xz5, yz5} 
E2g  d+g+i+k+2m   {x2y2, xy}, {z2(x2y2), xyz2}, {z4(x2y2), xyz4} 
E3g  g+i+k+2m     {xz(x2−3y2), yz(3x2y2)}, {xz3(x2−3y2), yz3(3x2y2)} 
E4g  g+i+2k+2m    {(x2y2)2−4x2y2, xy(x2y2)}, {z2((x2y2)2−4x2y2), xyz2(x2y2)} 
E5g  i+2k+2m      {xz(x2−(5+2√5)y2)(x2−(5−2√5)y2), yz((5+2√5)x2y2)((5−2√5)x2y2)} 
Au   p+f+h+j+l    z, z3, z5 
Bu   2j+2l 
E1u  p+f+h+j+l    {x, y}, {xz2, yz2}, {xz4, yz4} 
E2u  f+h+j+l      {z(x2y2), xyz}, {z3(x2y2), xyz3} 
E3u  f+h+j+2l     {x(x2−3y2), y(3x2y2)}, {xz2(x2−3y2), yz2(3x2y2)} 
E4u  h+j+2l       {z((x2y2)2−4x2y2), xyz(x2y2)} 
E5u  h+2j+2l      {x(x2−(5+2√5)y2)(x2−(5−2√5)y2), y((5+2√5)x2y2)((5−2√5)x2y2)} 

 Notes:

    α  The order of the C12h point group is 24, and the order of the principal axis (C12) is 12. The group has 14 irreducible representations.

    β  The C12h point group is generated by two symmetry elements, which are canonically chosen as C12 and i.
       Other possible choices are C12 and σh, or less commonly S12 with either i or σh.

    γ  The lowest nonvanishing multipole moment in C12h is 4 (quadrupole moment).

    δ  This is an Abelian point group (the commutative law holds between all symmetry operations).
       The C12h group is Abelian because all its symmetry operations are coaxial. This is a sufficient condition.
       In Abelian groups, all symmetry operations form a class of their own, and all irreducible representations are one-dimensional.

    ε  Because the group is Abelian and the maximum order of rotation is >2, some irreducible representations have complex characters.
       These 20 cases have been combined into 10 two-dimensional representations that are no longer irreducible but have real-valued characters.
       Accordingly, 10 pairs of left and right rotations have been combined into one two-membered pseudo-class each.

    ζ  The 10 reducible “E” representations almost behave like true irreducible representations.
       Their norm, however, is twice the group order. Therefore, they have been marked with an asterisk in the table.
       This is essential when trying to decompose a reducible representation into “irreducible” ones using the familiar projection formula.

    η  Some of the characters in the table are irrational because the order of the principal axis is neither 1,2,3,4 nor 6.
       These irrational values can be expressed as cosine values, or as solutions of algebraic equations with a leading coefficient of 1.
       All characters are algebraic integers of a degree much less than half the order of the principal axis.

    θ  The point group corresponds to a constructible polygon, as the order of the principal axis is a product of any number
       of different Fermat primes (3,5,17,257,65537) times an arbitrary power of two. Therefore, all characters have an
       algebraic degree which is a power of two and can be expressed as radicals involving only square roots and integer numbers.

This Character Table for the C12h point group was created by Gernot Katzer.

For other groups and some explanations, see the Main Page.